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The paper presents formulation of the problem of layered plates composed of two various
isotropic materials. We assume that the first material M1 is characterized by the following
parameters: Young’s modulus E1 and Poisson’s ratio ν1, whereas the second one by E2 and
ν2, respectively. Let us consider two modelling cases for functionally graded material (FGM)
plates. These cases are related to an appropriate distribution of the material within two-layer
and three-layer systems. Our objective is to compare the stiffness of both the two-layer and
there-layer plates with the FGM plate containing various proportions between the material
components M1 and M2.
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1. Introduction

The effect of a continuous change in the plate properties (through the thickness) can be obtained
in various ways. The overall properties of FMGs are unique and differ from any of the individual
material forming it (Mahamood et al., 2012).

Usually, we assume isotropic plates with variation of two constituents: ceramic and metal
(Mokhtar et al., 2009). Another possibility is to assume aluminium-alumina FGM plates (Rohit
Saha and Maiti, 2012).

Thus, the created plate material is inhomogeneous with both the composition and material
properties varying smoothly through thickness of the plate. The material properties along the
thickness direction of the FGM plate vary in accordance to a power-law function, exponential
function, sigmoid function, etc. Another modelling examples known in the literature are related
to asymptotic and tolerance modelling (Woźniak, 1995; Nagórko, 1998, 2010; Wągrowska and
Woźniak, 2015; Woźniak et al., 2016).

Most material properties through the plate thickness are expressed by

p(z) = (p1 − p2)f(z) + p2 (1.1)

where

f(z) =
(1
2
+
z

h

)n
p = ρ,E, ν (1.2)

where h is the plate thickness, the subscripts 1 and 2 indicate the top z = h/2 and bottom
z = −h/2 surfaces, E – Young’s modulus, ν – Poisson’s ratio, ρ is mass density, n – material
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parameter (Reddy, 2000; Efraim, 2011; Kim and Reddy, 2013; Kumar et al., 2011). Mokhtar et
al. (2009) use the following definition of the function p(z)

p(z) =






f1(z)pc + [1 + f1(z)]pm for 0 ¬ z ¬
h

2

f2(z)pc + [1 + f2(z)]pm for −
h

2
¬ z ¬ 0

(1.3)

where

f1(z) = 1−
1

2

(
1−
2z

h

)n
f2(z) =

1

2

(
1 +
2z

h

)n
(1.4)

Delale and Erdogan (1983) and Rohit Saha and Maiti (2012) used an exponential function
in order to describe the variation of Young’s modulus in the following form

E(z) = Em exp
(
z +
h

2

)
B =

1

h
ln
Ec
Em

−
h

2
¬ z ¬

h

2
(1.5)

In this work, we present a new FGM plate model formulated by using an appropriate mo-
delling related to double-layer and three-layer plates.

2. Modelling of an FGM plate developed from a two-layer plate

Let us assume a two-layer plate whose scheme is shown in Fig. 1.

Fig. 1. A scheme of the two-layer plate

Our aim is to construct a gradient plate developed from a two-layer plate as well as to
compare the stiffnesses of both systems in the case of any quotient η = h1/h.

2.1. Plate geometry

The function describing the properties of the plate is defined as follows

p(z) =

{
p1 for 1− η ¬ ξ ¬ 1

p2 for 0 ¬ ξ ¬ 1− η

}

= p2[1 + εs(ξ)] p = ρ,E, ν (2.1)

where

s(ξ) =

{
0 for 0 ¬ ξ ¬ 1− η

1 for 1− η ¬ ξ ¬ 1
(2.2)

where ρ denotes density, E – Young’s modulus, ν – Poisson’s ratio, ε = (p1 − p2)/p2, ξ = z/h,
η = h1/h, 0 ¬ η ¬ 1, h = h1 + h2. Visualization of the discontinuous function s(ξ) (defined via
Eq. (2.2)) is presented in Fig. 2.
We are looking for a continuous-density function ρ(ξ) satisfying the following conditions:

— the law of mass conservation

1∫

0

ρ(ξ) dξ =
ρ1h1 + ρ2h2

h
= ρ2(1 + ερη) ερ =

ρ1 − ρ2
ρ2

η =
h1
h

(2.3)
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Fig. 2. Discontinuous function s(ξ), see Eq. (1.2)

— positive-density condition

ρ(ξ)  0 0 ¬ ξ ¬ 1 (2.4)

— boundary conditions

ρ(0) = ρ2 ρ(1) = ρ1 (2.5)

The function under consideration ρ(ξ) can be described as follows

ρ(ξ) = ρ2[1 + ερf(ξ)] (2.6)

where the function f(ξ) satisfies the conditions as follows

1∫

0

f(ξ) dξ =

1∫

0

s(ξ) dξ = η

f(0) = 0 f(1) = 1 f(ξ)  0 0 ¬ ξ ¬ 1

(2.7)

The functions characterizing elastic properties of the FGM material, i.e. Young’s modu-
lus E(ξ) and Poisson’s ratio ν(ξ), should satisfy the following conditions

E(ξ)  0 0 ¬ ξ ¬ 1 E(0) = E2 E(1) = E1

ν(ξ)  0 0 ¬ ξ ¬ 1 ν(0) = ν2 ν(1) = ν1
(2.8)

The forms of analyzed functions E(ξ) and ν(ξ) differ. In the case of metallic alloys, one
can assume ν1 = ν2 = ν because of small differences between Poisson’s ratios and the fact
that the effect of Poisson’s ratio on the deformation is much less than that of Young’s modulus
(Delale, Erdogan, 1983). However, analyzing the plates, it can be assumed that the function
E(ξ)/[1 − ν2(ξ)] is analogous to the form of the density function expressed by Eq. (2.6)

E(ξ)

1− ν2(ξ)
=
E2
1− ν22

[1 + εEf(ξ)] εE = α− 1 α =
E1(1− ν

2
2)

E2(1− ν
2
1)

(2.9)

and the function f(ξ) satisfies conditions (2.7).
Let us note that taking the function E(ξ)/[1 − ν2(ξ)] along with conditions (2.8)1 leads to

a simple interpretation of the static problem. Tensile strength of the FGM cross-section with
Young’s modulus and Poisson’s ratio described by Eqs. (2.9) is the same as for the cross-section
shown in Fig. 1.
Figure 3 shows the functions s and f satisfying conditions (2.7) for η = 0.2.
We anticipate the following form of f(ξ)

f(ξ) = fr(ξ) = ξ
r(a1ξ + a2) (2.10)

where r = n or r = 1/n, and n is an arbitrary natural number.
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Fig. 3. The functions f and s

The proposed function satisfies boundary condition (2.7)2, whereas condition (2.7)3 is satis-
fied

∀r 6= 0 if a2 = 1− a1 ⇒ fr(ξ) = ξ
r[a1(ξ − 1) + 1] (2.11)

As a special case r = n = 0, condition (2.7)3 will be satisfied with a1 = 1.
Condition (2.7)1 gives

1∫

0

f(ξ) dξ =

1∫

0

ξr[a1(ξ − 1) + 1] dξ =
2 + r − a1
(1 + r)(2 + r)

= η (2.12)

what implies

a1 = (2 + r)[1− η(1 + r)] (2.13)

Taking condition (2.7)4

ξr[a1(ξ − 1) + 1]  0 (2.14)

it follows that at n > 0, f(ξ)  0 for

−r ¬ a1 ¬ 1
1

r + 2
¬ η ¬

2

r + 2
(2.15)

It is obvious that for each η, we can find an appropriate natural number n for r = n or
r = 1/n.
Thus, f(ξ) is written as follows

f(ξ) = fr(ξ) = ξ
r{1− (1− ξ)(2 + r)[1− η(1 + r)]} (2.16)

As a special case of f0(ξ), we obtain η = 1/2, f0(ξ) = ξ. Taking r = 1

f1(ξ) = ξ[1− (1− ξ)3(1 − 2η)] for
1

3
¬ η ¬

2

3
(2.17)

For n  2, we have two different functions

fnξ) = ξ
n{1− (1− ξ)(2 + n)[1− η(1 + n)]} (2.18)

or

gn(ξ) = f1/n(ξ) = ξ
1

n

{
1− (1− ξ)

(
2 +
1

n

)[
1− η

(
1 +
1

n

)]}
(2.19)
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Fig. 4. Ranges of η for fn(ξ) and gn(ξ) satisfying conditions (2.7)

For a given value η, one can find such a value n at which the functions fn(ξ) or gn(ξ) meet
conditions (2.7). Figure 4 shows such ranges of η at which the functions fn(ξ) and gn(ξ) satisfy
the conditions expressed via Eqs. (2.7).

For η = 1/3, Fig. 4 depicts four possible values of n, i.e. n = 1, 2, 3, 4. On the other hand,
we have three functions to be shown in Fig. 5a. In the case of η = 0.2, we obtain six functions
satisfying conditions (2.7) for n = 3, 4, 5, 6, 7, 8 (see graphs visualized in Fig. 5b). It is obvious
that for any η it gives a collection of functions satisfying conditions (2.7).

Fig. 5. Graphs of fn(ξ) for: (a) η = 1/3 and n = 1, 2, 3, 4; (b) η = 0.2 and n = 3, 4, 5, 6, 7, 8

Moving back to the graph illustrated in Fig. 4, it is obvious that for 1/2 ¬ η ¬ 1 we get
an infinite number of functions satisfying conditions (2.7). Figure 6 shows variation of func-
tions E(ξ)(1 − ν22 )/{E2[1 − ν

2(ξ)]} = 1 + εEf(ξ), f(ξ) = fn(ξ) or g(ξ) = gn(ξ) for α = 2,
η = 1/5, 1/6, 1/3 along the FGM plate thickness.

2.2. Stiffness of the two-layer and FGM plates

The stiffness of the two-layer plate is expressed by the formula

Dw =
E2h

3

12(1 − ν2)

[
η3α+ (1− η)3 +

3(1− η)αη

1− η(1− α)

]
(2.20)
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Fig. 6. Cross section of the FGM two-component plate: (a) α = 2, n = 3, η = 1/5,
(b) α = 2, n = 1, η = 1/3, (c) α = 2, n = 1, η = 2/3

The stiffness of the FGM plate depends on the functions f or g. These functions depend, in
turn, on the variable ξ, on the parameter η = h1/h and on the natural number n

Ef (ξ, α, n, η) =
E

1− ν2
(ξ, α, n, η) =

E2
(1− ν22

[1 + (α− 1)fn(ξ)] (2.21)

or

Eg(ξ, α, n, η) = Ef
(
ξ, α,
1

n
, η
)
=
E2
1− ν22

[1 + (α− 1)gn(ξ)] (2.22)

The stiffness of the FGM plate material is expressed via formulas:
— for 1

n+2 ¬ η ¬
2
n+2

Df(FGM )(α, n, η) =
E2h

3

1− ν22

1−ef∫

−ef

[1 + (α− 1)fn(ξ + ef )]ξ
2 dξ

=
1

3
− ef + e

2
f + (α− 1)

(

ηe2f +
2 + (1 + n)(2 + n)η

(3 + n)(4 + n)
−
2ef [1 + (1 + n)(2 + n)η]

(2 + n)(3 + n)

)(2.23)

— for n
1+2n ¬ η ¬

2n
1+2n

Dg(FGM )(α, n, η) = Df(FGM )
(
α,
1

n
, η
)
=
E2h

3

1− ν22

1−eg∫

−eg

[1 + (α − 1)g(ξ + eg)]ξ
2 dξ =

1

3
− eg

+ e2g + (α− 1)

(
2n2 + η{(1 − eg)[1− eg + n(3− 7eg)] + 2n

2(1− 4eg + 6e
2
g)}

(1 + 3n)(1 + 4n)

−
2n2eg

(1 + 2n)(1 + 3n)

)

(2.24)

whereas

ef (α, η, n) =
4 + 5n+ n2 + 2α+ 2(1 + n)(2 + n)(α− 1)η

2(2 + n)(3 + n)[1 + (α− 1)η]

eg = ef
(
α, η,
1

n

)
=
1 + 5n+ 4n2 + 2n2α+ 2(1 + n)(1 + 2n)(α− 1)η

2(2n + 1)(3n + 1)[1 + (α− 1)η]

(2.25)
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In general, we have the following inequalities

Df(FGM )
(
α, n, η =

2

2 + n

)
6= Df(FGM )

(
α, n+ 1, η =

1

2 + n

)

Dg(FGM )
(
α, n, η =

2n

2n+ 1

)
6= Dg(FGM )

(
α, n+ 1, η =

n

2n+ 1

) (2.26)

but there always exists such η̂ meeting the following equality for each α

DFGM (α, n, η̂) = DFGM (α, n + 1, η̂) (2.27)

For each α, the following equality is satisfied

Df(FGM )
(
α, n, η =

1

2 + n

)
= Df(FGM )

(
α, n+ 1, η =

1

2 + n

)
(2.28)

In the case of n/(1+ 2n) ¬ η ¬ 2n/(1+ 2n), there exist such values of η̂ satisfying the following
equalities

Dg(FGM )(α, n, η̂) = Dg(FGM )(α, n + 1, η̂) (2.29)

For example: Dg(FGM )(α = 2, n = 1, η̂) = Dg(FGM )(α = 2, n = 2, η̂), for η̂ = 0.424472.
Figure 7 presents diagrams of the function r(η) describing the stiffness of the plate

D = E2h
3r(η)/[12(1 − ν22)] for α = 2 where Dw and DFGM denote the two-layer plate and

the graded material plate, respectively.

Fig. 7. A diagram of the function r(η)

3. Modelling of the gradient plate developed from the three-layer plate

Let us consider a three-layer plate with a symmetrical arrangement of layers. In such a case, it
is convenient to take the intermediate layer thickness equal to 2h2 (Fig. 8).

3.1. Determining the functions fn, gn

Similarly, as in the case of two-layer plate, we assume that Eqs. (2.9) hold provided that the
functions fn and gn have the following forms

fn(ξ) = ξ
2n[1− a1(1− ξ

2)] gn(ξ) = (ξ
2)
1

n [1− b1(1− ξ
2)] (3.1)
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Fig. 8. A scheme of the three-layer plate

Satisfying the following conditions (see (2.7))

1∫

0

f(ξ) dξ =

1∫

0

s(ξ) dξ = η =
h1
h

f(±1) = 1 f(0) = 0 f(ξ)  0 − 1 ¬ ξ ¬ 1

(3.2)

we obtain the functions fn and gn of the form:

— for 1
3+2n ¬ η ¬

3+4n
(1+2n)(3+2n)

fn(ξ) = ξ
2n
(
1−
1

2
(3 + 2n)[1− η(1 + 2n)](1− ξ2)

)
(3.3)

— for n
2+3n ¬ η ¬

n(3n+4)
(2+n)(2+3n)

gn(ξ) = f1/n(ξ) = (ξ
2)
1

n

(
1−

1

2n2
(2 + 3n)[n(1 − η)− 2η](1 − ξ2)

)
(3.4)

Figure 9 shows the ranges of η for the functions fn(ξ) and gn(ξ) satisfying conditions (2.7).

Fig. 9. Ranges of η for fn(ξ) and gn(ξ) satisfying conditions (2.7)

Figure 10a presents functions f1 = g1 within the range of validity 3/15 ¬ η ¬ 7/15, whereas
the functions g10 for 30/96 ¬ η ¬ 85/96 are visualized in Fig. 10b.
Similarly, as in Section 3, the function E(ξ)/[1 − ν2(ξ)] can be expressed as follows

E(ξ)

1− ν2(ξ)
=
E2
1− ν22

[1 + εEf(ξ)] (3.5)
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Fig. 10. (a) Functions f1 = g1 for 3/15 ¬ η ¬ 7/15, (b) functions g10 for 30/96 ¬ η ¬ 85/96

where the following designations are adopted

εE = α− 1 α =
E1(1− ν

2
2)

E2(1− ν
2
1)

f(ξ) = fn(ξ) or f(ξ) = gn(ξ) (3.6)

Figure 11 presents variations of the function E(ξ)(1 − ν22)/{E2[1 − ν
2(ξ)]} = 1 + εEf(ξ),

f(ξ) = fn(ξ) or g(ξ) = gn(ξ) for α = 2, η = 1/5, 7/15, 5/8 along the FGM plate thickness.

Fig. 11. Cross section of the FGM two-component plate: (a) f1(α = 2, η = 1/5), (b) f1(α = 2, η = 7/15),
(c) g2(α = 2, η = 5/8)

3.2. Stiffness of the three-layer FGM plate

The stiffness of the three-layer plate Dw can be described as follows

Dw =
2E2h

3

3(1 − ν22)
[(1− η)3 + αη(3 − 3η + η2)] (3.7)

In the case of the FGM plate, the following formulas can be applied:
— for 1

3+2n ¬ η ¬
3+4n

(1+2n)(3+2n)

Df(FGM )(α, n, η) =
2E2h

3

3(1− ν22)

3(3 + 2α) + 4n(4 + n) + 3η(α − 1)[3 + 4n(2 + n)]

(3 + 2n)(5 + 2n)
(3.8)

— for n
2+3n ¬ η ¬

n(4+3n)
(2+n)(2+3n)

Dg(FGM )(α, n, η) =
2E2h

3

3(1− ν22)

4 + 16n + 9n2 + 6αn2 − 3η(2 + n)(2 + 3n)(α− 1)

(2 + 3n)(2 + 5n)
(3.9)
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The stiffnesses of the layered plate Dw and the FGM plate DFGM as a function of η for
α = E1/E2 = 2 are visualized in Fig. 12.

Fig. 12. Layered plate stiffness Dw and FGM plate stiffness DFGM as a function of η
for α = E1/E2 = 2

4. Conclusions

Figure 7 shows the dependence of the stiffness of a two-layer plate and an FGM plate on the
parameter η. Analyzing this graph, one concludes that taking two plates (the two-layer and
FGM) with the same amount of the material and for certain values of the parameter η, the
stiffness of the FGM plate is greater than the stiffness of the two-layer plate. It proves that we
can construct an FGM plate, according to the procedure outlined in Section 2, with a higher
stiffness of the two-layer plate and with the same amount of the material for both plates. In the
case of the three-layer plate and its corresponding FGM plate, the FGM plate stiffness is less
than the stiffness of the three-layer plate for all values of the parameter η, except for η = 0 and
η = 1, for which the stiffnesses are the same.
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